Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@sitit.tu.ac.th Lecture 16Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

S-R Latch

- There are two versions of SET-RESET (S-R) latches.

(a) Active-HIGH input S-R latch

(b) Active-LOW input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latch

S-R Latch (Remember This!)

- Two inputs
- S for set
- R for reset
- Two useful states (for normal operation)
- When output $\mathrm{Q}=1$ and $\overline{\mathrm{Q}}=0$, the latch is said to be in the set state.
- When output $\mathrm{Q}=0$ and $\overline{\mathrm{Q}}=1$, the latch is said to be in the reset state.

(a) Active-HIGH input S-R latch
(b) Active-LOW input $\bar{S}-\bar{R}$ latch

The "Old Q"-"New Q" Analysis

$$
\begin{aligned}
Q_{\text {new }} & =\overline{R+X} \\
& =\overline{R+\overline{Q_{\text {old }}+S}} \\
& =\bar{R} \cdot\left(Q_{\text {old }}+S\right)
\end{aligned}
$$

Input		Output
S	\mathbf{R}	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	Q old 2
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

The "Old Q"-"New Q" Analysis (2)

$$
\begin{aligned}
Q_{\text {new }} & =\overline{\bar{S}}+\bar{X} \\
& =\overline{\bar{S}}+\overline{\left(\overline{Q_{o l d}}+\overline{\bar{R}}\right)} \\
& =\overline{\bar{S}}+Q_{\text {old }} \cdot \bar{R}
\end{aligned}
$$

Input		Output
$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	1
$\mathbf{0}$	1	1
$\mathbf{1}$	$\mathbf{0}$	0
$\mathbf{1}$	$\mathbf{1}$	$\mathrm{Q}_{\text {old }}$

"Old Q"/"New Q" Analysis

(a) Active-HIGH input S-R latch

Input		Output
S	\mathbf{R}	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{Q}_{\text {old }}$
$\mathbf{0}$	1	0
1	0	1
1	1	0

(b) Active-LOW input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latch

Input	Output	
\bar{S}	\bar{R}	$Q_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$Q_{\text {old }}$

Expanded Version

Inputs		Outputs		Mode of Operation	Comment
S	R	Q	\bar{Q}		
0	0	NC	NC	Hold	No change.
0	1	0	1	Reset	For RESETting Q to 0
1	0	1	0	Set	For SETting Q to 1
1	1	0	0	Prohibited	Invalid Condition

Inputs		Outputs		Mode of Operation	Comment
\bar{S}	\bar{R}	Q	\bar{Q}		
0	0	1	1	Prohibited	Invalid Condition
0	1	1	0	Set	For SETting Q to 1
1	0	0	0	Reset	For RESETting Q to 0
1	1	NC	NC	Hold	No change.

Short Version (Remember This!)

Inputs		Mode
\bar{S}	\bar{R}	
0	1	SET
1	0	RESET
1	1	HOLD

Operating S-R latch

Input		Mode
S	R	
0	0	HOLD
0	1	RESET
1	0	SET

- Under normal conditions, both inputs of the latch remain at 0 unless the state is to be change.
- The application of a 1 to the \mathbf{S} input causes the latch to go to the set state.
- The S input must go back to 0 before R is changed to 1 to avoid occurrence of the undefined state.
- Applying a 0 to S with $\mathrm{R}=0$ leaves the circuit in the same state.
- The application of a 1 to the \mathbf{R} input causes the latch to go to the reset state.
- We can then remove the one from R , and the circuit remains in the reset state.

$(1,1)$ Problem for S-R Latch

- If a 1 is applied to both the inputs of the latch, both outputs go to 0 .
- This produces an undefined state.
- It results in an indeterminate or unpredictable next state when both inputs return to 0 simultaneously.
- In normal operation, these problems are avoided by making sure that 1's are not applied to both inputs simultaneously.

Operating $\bar{S}-\bar{R}$ latch

Inputs		Mode
\bar{S}	\bar{R}	
0	1	SET
1	0	RESET
1	1	HOLD

- Under normal conditions, both inputs of the latch remain at 1 unless the state is to be change.
- The application of a 0 to the $\overline{\mathbf{S}}$ input causes the latch to go to the set state.
- The S input must go back to 1 before R is changed to 1 to avoid occurrence of the undefined state.
- Applying a 1 to S with $\mathrm{R}=1$ leaves the circuit in the same state.
- The application of a 0 to the $\overline{\mathbf{R}}$ input causes the latch to go to the reset state.
- We can then remove the 0 from R , and the circuit remains in the reset state.

Example

Gated Latch

- A gated latch is a variation on the basic latch.
- The gated latch has an additional input, called enable ($E N$) that must be HIGH in order for the latch to respond to the S and R inputs.

(a) Logic diagram
(b) Logic symbol

Gated Latch

Observe that:

$$
\begin{aligned}
& A=\overline{S \cdot E N}=\bar{S}+\overline{E N} \\
& B=\overline{R \cdot E N}=\bar{R}+\overline{E N}
\end{aligned}
$$

EN	A	B
$0 \Rightarrow$	1	1
$1 \Rightarrow$	\bar{S}	\bar{R}

This is the same as the active-LOW input latch!

Example: Gated S-R Latch

(a) Logic diagram

(b) Logic symbol
(b)

Gated D latch

- The D latch is a variation of the S-R latch.
- Has only one input in addition to EN.
- This input is called the D (data) input.
- Combine the S and R inputs into a single D input.

Gated D Latch: Operation

- A simple rule for the D latch is:

- Q follows D when the Enable is active/asserted.
- In this situation, the latch is said to be "open" and the path from D input to Q output is "transparent".
- The circuit is often called a transparent latch for this reason.
- When EN is LOW, the state of the latch is not affected by the D input.
- In this situation, the latch is said to be "close"
- The Q output retains its last value and no longer changes in response to D , as long as EN remains negated.
- Output is "latched" at the last value when the enable signal becomes not asserted.
- Truth Table:
Q_{0} is the prior output level before the indicated input conditions were established.

Inputs		Outputs		
D	$E N$	Q	\bar{Q}	Comments
0	1	0	1	RESET
1	1	1	0	SET
X	0	Q_{0}	\bar{Q}_{0}	No change

Example: Gated D Latch

(a) $E N$
(b) Q

Q follows D when the Enable is active.

Flip-Flop

- Latches sample their inputs (and change states) any time the EN bit is asserted
- Many times we want more control over when to sample the input
- A flip-flop differs from a latch in the manner it changes states.
- A flip-flop is a clocked device.
- Flip-flops are synchronous: the output changes state only at a specified point on the triggering input called the clock (CLK)
- In other words, changes in the output occur in synchronization with the clock.
- An edge-triggered flip-flop changes state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse.

Edge-Triggered Flip-Flops

"Edge-triggered flipflop" is redundant (all flip-flops are edgetriggered

Positive edge-triggered (no bubble at C input)

(a) $\mathrm{S}-\mathrm{R}$

(b) D

(c) $\mathrm{J}-\mathrm{K}$

Negative edge-triggered (bubble at C input)

D Flip-Flop

- The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its D input only on the rising edge of the clock.
- The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

(a) Positive-edge triggered

(b) Negative-edge triggered
$\uparrow=$ clock transition LOW to HIGH

Ex: Positive-edge triggered D Flip-Flop

- Determine the Q output waveform if the flip-flop starts out RESET

Exercise: What is this?

D Flip Flop: Implementation

- Tie two D-latches together to make a D flip-flop

- When C is $0\left(\mathrm{C}_{1}=1\right)$, the master latch is open and follows the D input.
- When C is $1\left(\mathrm{C}_{1}=0, \mathrm{C}_{2}=1\right)$, the master latch is closed and its output is transferred to the slave latch.
- The slave latch is open all the while that C is 1 , but changes only at the beginning of this interval, because the master is closed and unchanging during the rest of the interval.

J-K Flip-Flop

- Has two inputs, labeled J and K (along with the CLK).
- When both J and $\mathrm{K}=1$, the output changes states (toggles) on the rising clock edge.

Inputs			Outputs		
J	K	CLK	Q	\bar{Q}	Comments
0	0	\uparrow	Q_{0}	\bar{Q}_{0}	No change
0	1	\uparrow	0	1	RESET
1	0	\uparrow	1	0	SET
1	1	\uparrow	\bar{Q}_{0}	Q_{0}	Toggle

A J-K flip-flop connected for toggle operation is sometimes called a T flip-flop.

Example: J-K Flip-Flop

Asynchronous Inputs

- Most flip-flops have other inputs that are asynchronous, meaning they affect the output independent of the clock.
- Two such inputs are normally labeled preset (PRE) and clear (CLR).
- These inputs are usually active-LOW.
- A J-K flip flop with active-LOW preset and CLR is shown.

Example

Logic Symbols: Latches and Flip-Flops

(a) Active-HIGH input S-R latch

(e) S-R edge-triggered flip-flops -

(c) Gated S-R latch

(g) J-K edge-triggered flip-flops

(d) Gated D latch
(b) Active-LOW input $\bar{S}-\bar{R}$ latch
(f) D edge-triggered flip-flops

Latches and Flip-Flops

- Can maintain a binary state indefinitely (as long as power is delivered to the circuit), until directed by an input signal to switch states.
- The major differences among the various types of latches and flipflops are the number of inputs the process and the manner in which the inputs affect the binary state.
- The most basic storage elements are latches, from which flip-flops are usually constructed.
- Although latches are most often used within flip-flops, they can also be used with more complex clocking methods to implement sequential circuits directly.
- The design of such circuits is, however, beyond the scope of this class.

Some Applications

- Divide the clock frequency by 2

Some Applications

- Divide the clock frequency by 4

