Digital Circuits ECS 371

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 16

ECS371.PRAPUN.COM

Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

S-R Latch

• There are two versions of SET-RESET (S-R) latches.

(a) Active-HIGH input S-R latch

(b) Active-LOW input $\overline{S}-\overline{R}$ latch

S-R Latch (Remember This!)

- Two inputs
 - S for set
 - **R** for **reset**
- Two useful states (for normal operation)
 - When output Q = 1 and $\overline{Q} = 0$, the latch is said to be in the set state.
 - When output Q = 0 and $\overline{Q} = 1$, the latch is said to be in the reset state.

(a) Active-HIGH input S-R latch

(b) Active-LOW input \overline{S} - \overline{R} latch

The "Old Q"-"New Q" Analysis

$$Q_{new} = \overline{R + X}$$
$$= \overline{R + \overline{Q_{old} + S}}$$
$$= \overline{R} \cdot (Q_{old} + S)$$

Inp	out	Output
S	R	Q _{new}
0	0	Q _{old}
0	1	0
1	0	1
1	1	0

The "Old Q"-"New Q" Analysis (2)

$$Q_{new} = \overline{\overline{S}} + \overline{X}$$
$$= \overline{\overline{S}} + \overline{\left(\overline{Q_{old}} + \overline{\overline{R}}\right)}$$
$$= \overline{\overline{S}} + Q_{old} \cdot \overline{R}$$

Inp	out	Output
S	R	Q _{new}
0	0	1
0	1	1
1	0	0
1	1	Q _{old}

"Old Q"/"New Q" Analysis

 \overline{S}

(a) Active-HIGH input S-R latch

Inp	out	Output
S	R	Q _{new}
0	0	Q old
0	1	0
1	0	1
1	1	0

(b) Active-LOW input $\overline{S}-\overline{R}$ latch

Inp	out	Output
S	R	Q _{new}
0	0	1
0	1	1
1	0	0
1	1	Q _{old}

Expanded Version

Inp	Inputs		puts	Mode	Comment
S	R	Q	$\overline{m{Q}}$	of Operation	Comment
0	0	NC	NC	Hold	No change.
0	1	0	1	Reset	For RESETting Q to 0
1	0	1	0	Set	For SETting Q to 1
1	1	0	0	Prohibited	Invalid Condition

Inputs		Outputs		Mode	Commont
\overline{S}	\overline{R}	Q	\overline{Q}	of Operation	Comment
0	0	1	1	Prohibited	Invalid Condition
0	1	1	0	Set	For SETting Q to 1
1	0	0	0	Reset	For RESETting Q to 0
1	1	NC	NC	Hold	No change.

Short Version (Remember This!)

Inp	but	Mada
S R		Mode
0 0		HOLD
0	1	RESET
1	0	SET

Inp	uts	Mada
\overline{S}	R	Mode
0	1	SET
1	0	RESET
1	1	HOLD

Operating S-R latch

In	out	Mode
S	R	
0	0	HOLD
0	1	RESET
1	0	SET

- Under normal conditions, both inputs of the latch remain at 0 unless the state is to be change.
- The application of a 1 to the **S input** causes the latch to go to the **set state**.
 - The S input must go back to 0 before R is changed to 1 to avoid occurrence of the undefined state.
 - Applying a 0 to S with R = 0 leaves the circuit in the same state.
- The application of a 1 to the **R input** causes the latch to go to the **reset state**.
 - We can then remove the one from R, and the circuit remains in the reset state.

(1,1) Problem for S-R Latch

- If a 1 is applied to both the inputs of the latch, both outputs go to 0.
- This produces an undefined state.
- It results in an indeterminate or unpredictable next state when both inputs return to 0 simultaneously.
- In normal operation, these problems are avoided by making sure that 1's are not applied to both inputs simultaneously.

Operating S-R latch

Inp	outs	Mada
\overline{S}	R	Mode
0	1	SET
1	0	RESET
1	1	HOLD

- Under normal conditions, both inputs of the latch remain at 1 unless the state is to be change.
- The application of a 0 to the **S** input causes the latch to go to the **set state**.
 - The S input must go back to 1 before R is changed to 1 to avoid occurrence of the undefined state.
 - Applying a 1 to S with R = 1 leaves the circuit in the same state.
- The application of a 0 to the **R** input causes the latch to go to the **reset state**.
 - We can then remove the 0 from R, and the circuit remains in the reset state.

Gated Latch

- A gated latch is a variation on the basic latch.
- The gated latch has an additional input, called enable *(EN)* that must be HIGH in order for the latch to respond to the *S* and *R* inputs.

Gated Latch

Observe that:

$$A = \overline{S \cdot EN} = \overline{S} + \overline{EN}$$
$$B = \overline{R \cdot EN} = \overline{R} + \overline{EN}$$

EN	Α	В
0 ⇔	1	1
1 ⇒	\overline{S}	\overline{R}

Example: Gated S-R Latch

Gated D latch

- The D latch is a variation of the S-R latch.
- Has only one input in addition to EN.
 - This input is called the D (data) input.
- Combine the S and R inputs into a single D input.

Gated D Latch: Operation

- A simple rule for the D latch is:
 - Q follows D when the Enable is active/asserted.
 - In this situation, the latch is said to be "open" and the path from D input to Q output is "transparent".
 - The circuit is often called a transparent latch for this reason.
- When EN is LOW, the state of the latch is not affected by the D input.
 - In this situation, the latch is said to be "close"
 - The Q output retains its last value and no longer changes in response to D, as long as EN remains negated.
- Output is "latched" at the last value when the enable signal becomes not asserted.
- Truth Table: –

 Q_0 is the prior output level before the indicated input conditions were established.

In	puts	Outputs		
D	EN	Q	Q	Comments
0	1	0	1	RESET
1	1	1	0	SET
Х	0	Q ₀	\overline{Q}_0	No change

Flip-Flop

- Latches sample their inputs (and change states) any time the EN bit is asserted
- Many times we want more control over when to sample the input
- A **flip-flop** differs from a latch in the manner it changes states.
- A flip-flop is a *clocked* device.
- Flip-flops are **synchronous**: the output changes state only at a specified point on the triggering input called the **clock (CLK)**
 - In other words, changes in the output occur in synchronization with the clock.
- An edge-triggered flip-flop changes state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse.

Edge-Triggered Flip-Flops

"Edge-triggered flipflop" is redundant (all flip-flops are edgetriggered

Positive edge-triggered (no bubble at C input)

D Flip-Flop

- The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its D input only on the **rising edge of the clock**.
- The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

Inputs		Outputs		
D	CLK	Q	Q	Comments
1	1	1	0	SET
0	1	0	1	RESET

(a) Positive-edge triggered

(b) Negative-edge triggered

 \uparrow = clock transition LOW to HIGH

Ex: Positive-edge triggered D Flip-Flop

• Determine the Q output waveform if the flip-flop starts out RESET

Exercise: What is this?

D Flip Flop: Implementation

• Tie two D-latches together to make a D flip-flop

- When C is 0 (C₁ = 1), the master latch is open and follows the D input.
- When C is 1 (C₁ = 0, C₂ = 1), the master latch is closed and its output is transferred to the slave latch.
 - The slave latch is open all the while that C is 1, but changes only at the beginning of this interval, because the master is closed and unchanging during the rest of the interval.

J-K Flip-Flop

- Has two inputs, labeled J and K (along with the CLK).
- When both J and K = 1, the output changes states (toggles) on the rising clock edge.

A J-K flip-flop connected for toggle operation is sometimes called a T flip-flop.

Asynchronous Inputs

- Most flip-flops have other inputs that are *asynchronous*, meaning they affect the output independent of the clock.
- Two such inputs are normally labeled **preset (PRE)** and **clear (CLR)**.
- These inputs are usually active-LOW.
- A J-K flip flop with active-LOW preset and CLR is shown.

Logic Symbols: Latches and Flip-Flops

(a) Active-HIGH input S-R latch

(b) Active-LOW input $\overline{S} - \overline{R}$ latch

(c) Gated S-R latch

(d) Gated D latch

(e) S-R edge-triggered flip-flops

(f) D edge-triggered flip-flops

(g) J-K edge-triggered flip-flops

Latches and Flip-Flops

- Can maintain a binary state indefinitely (as long as power is delivered to the circuit), until directed by an input signal to switch states.
- The major differences among the various types of latches and flipflops are the number of inputs the process and the manner in which the inputs affect the binary state.
- The most basic storage elements are latches, from which flip-flops are usually constructed.
- Although latches are most often used within flip-flops, they can also be used with more complex clocking methods to implement sequential circuits directly.
 - The design of such circuits is, however, beyond the scope of this class.

Some Applications

• Divide the clock frequency by 2

Some Applications

• Divide the clock frequency by 4

